CARACTERIZACIÓN DE LOS MECANISMOS DE ABSORCIÓN DE NUTRIENTES POR BACTERIAS RESISTENTES Y BÚSQUEDA DE INHIBIDORES MEDIANTE BIOINFORMÁTICA

Autores/as

DOI:

https://doi.org/10.24933/rep.v8i1.450

Palabras clave:

Análisis in silico, Resistencia a antibióticos, Transporte de nutrientes, Atraque molecular, Terapia dirigida

Resumen

Acinetobacter baumannii y Klebsiella pneumoniae son patógenos gramnegativos conectados por su resistencia a los antibióticos, utilizando mecanismos de comunicación celular y captación de nutrientes mediados por transportadores del tipo ABC. Como proteínas de ligação ao substrato (SBP) desses transportadores desempenham um papel crucial no transport através da membrana e na absorción de nutrientes, como poliaminas y taurina, esenciales para la sobrevivência bacteriana. Este estudio tiene como objetivo caracterizar y predizer como estructuras de los SBP que transportan taurina y poliaminas, además de disponer de posibles interacciones con ligantes e inhibidores. Como secuencias FASTA de PotD y TauA de A. baumannii, como PotD, PotF y TauA de K. pneumoniae, se obtienen en bancos de datos y se analizan mediante softwares específicos para estructuras e interacciones de predizer. A ancoragem molecular realizado com os modelos tridimensionais das proteínas revelou energia livre favorável para a ligação das proteínas aos seus respectivos ligantes, corroborando datos da literatura; En particular, PotF de K. pneumoniae foi identificado como un transportador doble de putrescina y espermidina. Los testes adicionales muestran que la vigabatrina y el GABA son potenciales para interactuar con proteínas TauA, mientras que la cistamina se encuentra como interagente con PotD de A. baumannii. Estos resultados destacan la viabilidad de usar esas moléculas como alvos para inibir la captación de nutrientes en bacterias resistentes, abriendo camino para el desarrollo de nuevos antimicrobianos. La identificación de estas interacciones puede abrir nuevas posibilidades para el tratamiento de infecciones causadas por esos patógenos, contribuyendo a estrategias terapéuticas más eficaces en el combate a la resistencia bacteriana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ALAM, A.; LOCHER, K. P. Structure and Mechanism of Human ABC Transporters. Annual Review of Biophysics, v. 52, p. 275-300, 2023. https://doi.org/10.1146/annurev-biophys-111622-091232 ALTMAN, R. B. A curriculum for bioinformatics: the time is ripe. Bioinformatics (Oxford, England), v. 14, n. 7, p. 549–550, 1998. https://doi.org/10.1093/bioinformatics/14.7.549 ALTSCHUL,S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, A.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research ̧v. 25, p. 3389-3402, 1997. https://doi.org/10.1093/nar/25.17.3389 ALMAGRO A., J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology, v. 37, n. 4, p. 420–423, 2019. https://doi.org/10.1038/s41587-019-0036-z ARAUJO, F. T., BOLANOS-GARCIA, V. M., PEREIRA, C. T., SANCHES, M., OSHIRO, E. E., FERREIRA, R. C. C., CHIGARDZE, D. Y., BARBOSA, J. A. G., FERREIRA, L. C. S., BENEDETTI, C. E., BLUNDELL, T. L., BALAN, A. Structural and physiological analyses of the alkanesulphonatebinding protein (SsuA) of the citrus pathogen Xanthomonas citri. Brasília: PLoS One. v. 8, p. 1-14, 2013. https://doi.org/10.1371/journal.pone.0080083 BARTAL, C. ; ROLSTON, K. VI; NESHER, L. Carbapenem-resistant Acinetobacter baumannii: colonization, infection and current treatment options. Infectious diseases and therapy, v. 11, n. 2, p. 683-694, 2022. https://doi.org/10.1007/s40121-022-00597-w BERNTSSON, R. P., SMITS, S. H. J., SCHMITT, L., SLOTBOOM, D., POOLMAN, B. Structural classification of substrate-binding proteins. Düsseldorf: FEBS Letters, v. 584, p. 2606-2617, 2010. https://doi.org/10.1016/j.febslet.2010.04.043 BURNS, M. R. et al. Amino acid/spermine conjugates: polyamine amides as potent spermidine uptake inhibitors. Journal of medicinal chemistry, v. 44, n. 22, p. 3632-3644, 2001. https://doi.org/10.1021/jm0101040 CREMONESI, A.S.; DE LA TORRE, L.I.; DEGENHARDT, M.F.S.; MUNIZ,G.S.V.; LAMY, V.T.; OLIVEIRA, C.L.P. BALAN, A. The citrus plant pathogen Xanthomonas citri has a dual polyamine-binding protein. Archives of Biochemistry and Biophysics, v. 28, p. 1-12, 2021. https://doi.org/10.1016/j.bbrep.2021.101171 DAWSON, R. J.,; LOCHER, K. P. (). Structure of a bacterial multidrug ABC transporter. Nature, v. 443(7108), p. 180–185, 2006. https://doi.org/10.1038/nature05155 DIENSTMANN, R. et al. Avaliação fenotípica da enzima Klebsiella pneumoniae carbapenemase (KPC) em Enterobacteriaceae de ambiente hospitalar. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 46, p. 23-27, 2010. https://doi.org/10.1590/S1676-24442010000100005 GOODSWEN, S. J.; KENNEDY, P. J.; ELLIS, J. T. A guide to in silico vaccine discovery for eukaryotic pathogens. Briefings in bioinformatics, 24 out. 2012. https://doi.org/10.1093/bib/bbs066 GUEDES, I. A. et al. New machine learning and physics-based scoring functions for drug discovery. Scientific reports, v. 11, n. 1, p. 3198, 2021. https://doi.org/10.1038/s41598-021-82410-1 GUERRA, J. V. S et al. KVFinder-web: a web-based application for detecting and characterizing biomolecular cavities. Nucleic Acids Research, v. 51, n. W1, p. W289-W297, 2023. https://doi.org/10.1093/nar/gkad324 GUNA, A.; HEDGE, R. S. Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control. Current Biology Review, v.28, 2018. DOI: https://doi.org/10.1016/j.cub.2018.02.004 HOET, P. H. et al. Kinetics and cellular localisation of putrescine uptake in human lung tissue. Thorax, v. 48, n. 12, p. 1235-1241, 1993. https://doi.org/10.1136/thx.48.12.1235 IGARASHI, K.; KASHIWAGI, K. Polyamines: mysterious modulators of cellular functions. Biochemical and biophysical research communications, v. 271, n. 3, p. 559-564, 2000. https://doi.org/10.1006/bbrc.2000.2601 JONES, P. M.; GEORGE, A. M. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Critical reviews in biochemistry and molecular biology, v. 48, n. 1, p. 39-50, 2013. DOI: https://doi.org/10.3109/10409238.2012.735644 KROGH, A. et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology, v. 305, n. 3, p. 567-580, 2001. https://doi.org/10.1006/jmbi.2000.4315 LARKIN, M. A. et al. Clustal W and Clustal X version 2.0. bioinformatics, v. 23, n. 21, p. 2947-2948, 2007. https://doi.org/10.1093/bioinformatics/btm404 LETUNIC I., SUPRIYA K., PEER B. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, v. 49, 2021. https://doi.org/10.1093/nar/gkaa937 LYBRAND, T. P. “Ligand-protein docking and rational drug design.” Current opinion in structural biology vol. 5,2 (1995): 224-8. doi:10.1016/0959-440x(95)80080-8 MARIANI, V. et al. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, v. 29, n. 21, p. 2722-2728, 2013 .https://doi.org/10.1093/bioinformatics/btt473 MCGUFFIN, L. J.; BRYSON, Kevin; JONES, David T. The PSIPRED protein structure prediction server. Bioinformatics, v. 16, n. 4, p. 404-405, 2000. https://doi.org/10.1093/bioinformatics/16.4.404 MIRDITA, M. et al. ColabFold: making protein folding accessible to all. Nature methods, v. 19, n. 6, p. 679-682, 2022. https://doi.org/10.1038/s41592-022-01488-1 NISHIKAWA, M., SHEN, L.,; OGAWA, K. Taurine dioxygenase (tauD)-independent taurine assimilation in Escherichia coli. Microbiology (Reading, England), v. 164, n. 11, p. 1446–1456, 2018. https://doi.org/10.1099/mic.0.000723 PEREIRA, C. T. Estudos funcionais e estruturais sobre o transportador do tipo ABC de sulfato em Xanthomonas citri. 2017. Tese (Doutorado em Genética e Biologia Molecular) - Instituto de Biologia da Universidade Estadual de Campinas, São Paulo, 2017. RASMUSSEN, R. N. et al. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells. European Journal of Pharmaceutical Sciences, v. 82, p. 138-146, 2016 https://doi.org/10.1016/j.ejps.2015.11.020 RIBEIRO, E. C. R; DE OLIVEIRA SANTOS, M.; DE SOUSA, Georgette Carnib. Superbactéria: Os principais mecanismos e medicamentos de resistência bacteriana. REVISTA DA FAESF, v. 6, n. 3, 2023. https://doi.org/10.58969/25947125.6.3.2022.170 SALAMOV, V. S. A.; SOLOVYEVAND, A. Automatic annotation of microbial genomes and metagenomic sequences. Metagenomics and its applications in agriculture, biomedicine and environmental studies. Hauppauge: Nova Science Publishers, p. 61-78, 2011. SAMPAIO, A. et al. The periplasmic binding protein NrtT affects xantham gum production and pathogenesis in Xanthomonas citri. FEBS open bio, v. 7, n. 10, p. 1499-1514, 2017. https://doi.org/10.1002/2211-5463.12281

SANTANA, C. A. et al. GRaSP: a graph-based residue neighborhood strategy to predict binding sites. Bioinformatics, v. 36, n. Supplement_2, p. i726-i734, 2020. https://doi.org/10.1093/bioinformatics/btaa805 SILVA, K.M.; FIGUEIREDO, N.G.; CREMONESI, A.S. Use of Bioinformatics Techniques in the Characterization of Genes and Proteins Involved in the Transport of Polyamines from Staphylococcus Genus. JSM Bioinformatics, Genomics and Proteomics, v. 6(1), 2023. https://doi.org/10.47739/2576-1102.bioinformatics.1041 STOJOWSKA-SWĘDRZYŃSKA, K. et al. Antibiotic heteroresistance in Klebsiella pneumoniae. International Journal of Molecular Sciences, v. 23, n. 1, p. 449, 2021. https://doi.org/10.3390/ijms23010449 VAN DER PLOEG, J. R. et al. Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. Journal of bacteriology, v. 179, n. 24, p. 7671-7678, 1997. https://doi.org/10.1128/jb.179.24.7671-7678.1997 VIEIRA, P. B.; PICOLI, S. U. Acinetobacter Baumannii multirresistente: aspectos clínicos e epidemiológicos. Revista Brasileira de Ciências da Saúde, v. 19., p. 151-6, 2015. DOI:10.4034/RBCS.2015.19.02.10 VON HEIJNE, G. The signal peptide. The Journal of membrane biology, v. 115, p. 195-201, 1990. https://doi.org/10.1007/bf01868635 QU, F., ELOMARI, K., WAGNER, A., DE SIMONE, A.,; BEIS, K. Desolvation of the substrate-binding protein TauA dictates ligand specificity for the alkanesulfonate ABC importer TauABC. The Biochemical journal, v. 476, n. 23, p. 3649–3660, 2019. https://doi.org/10.1042/bcj20190779 WISHART, D. S., FEUNANG, Y. D., GUO, A. C., LO, E. J., MARCU, A., GRANT, J. R., SAJED, T., JOHNSON, D., LI, C., SAYEEDA, Z., ASSEMPOUR, N., IYNKKARAN, I., LIU, Y., MACIEJEWSKI, A., GALE, N., WILSON, A., CHIN, L., CUMMINGS, R., LE, D., PON, A., … WILSON, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research. v. 46, e. 1, p. D1074-D1082, 2018. https://doi.org/10.1093/nar/gkx1037

Publicado

2024-12-11

Cómo citar

Carneiro, G. A., Antonio, H. da S., Nascimento, A. C. C., & Sampaio Cremonesi, A. (2024). CARACTERIZACIÓN DE LOS MECANISMOS DE ABSORCIÓN DE NUTRIENTES POR BACTERIAS RESISTENTES Y BÚSQUEDA DE INHIBIDORES MEDIANTE BIOINFORMÁTICA. Revista Ensaios Pioneiros, 8(1). https://doi.org/10.24933/rep.v8i1.450

Número

Sección

CIÊNCIAS BIOLÓGICAS E DA SAÚDE